Electrophysiological assessment of a peptide amphiphile nanofiber nerve graft for facial nerve repair

用于面神经修复的肽两亲物纳米纤维神经移植的电生理学评估

阅读:4
作者:Jacqueline J Greene, Mark T McClendon, Nicholas Stephanopoulos, Zaida Álvarez, Samuel I Stupp, Claus-Peter Richter

Abstract

Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。