Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction

衍生铜催化剂在 CO2 电还原过程中的结构演变和应变产生

阅读:4
作者:Qiong Lei, Liang Huang, Jun Yin, Bambar Davaasuren, Youyou Yuan, Xinglong Dong, Zhi-Peng Wu, Xiaoqian Wang, Ke Xin Yao, Xu Lu, Yu Han2

Abstract

Copper (Cu)-based catalysts generally exhibit high C2+ selectivity during the electrochemical CO2 reduction reaction (CO2RR). However, the origin of this selectivity and the influence of catalyst precursors on it are not fully understood. We combine operando X-ray diffraction and operando Raman spectroscopy to monitor the structural and compositional evolution of three Cu precursors during the CO2RR. The results indicate that despite different kinetics, all three precursors are completely reduced to Cu(0) with similar grain sizes (~11 nm), and that oxidized Cu species are not involved in the CO2RR. Furthermore, Cu(OH)2- and Cu2(OH)2CO3-derived Cu exhibit considerable tensile strain (0.43%~0.55%), whereas CuO-derived Cu does not. Theoretical calculations suggest that the tensile strain in Cu lattice is conducive to promoting CO2RR, which is consistent with experimental observations. The high CO2RR performance of some derived Cu catalysts is attributed to the combined effect of the small grain size and lattice strain, both originating from the in situ electroreduction of precursors. These findings establish correlations between Cu precursors, lattice strains, and catalytic behaviors, demonstrating the unique ability of operando characterization in studying electrochemical processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。