Properties of three collagen scaffolds in comparison with native connective tissue: an in-vitro study

三种胶原支架与天然结缔组织的特性比较:一项体外研究

阅读:12
作者:Alex Solderer, Nicole Widmer, Andrea Gubler, Kai R Fischer, Stefan P Hicklin, Patrick R Schmidlin

Methods

Three test materials-one porcine collagen matrix (p-CM), two acellular dermal matrices (porcine = p-ADM, allogenic = a-ADM)-and porcine native connective tissue (p-CTG) as a control material were examined for resorption in four solutions using a high-precision scale. The solutions were artificial saliva (AS) and simulated body fluid (SBF), both with and without collagenase (0.5 U/ml at 37 °C). In addition, the surface structures of CS were analyzed using a scanning electron microscope (SEM) before and after exposure to AS or SBF. The swelling behavior of CS was evaluated by measuring volume change and liquid absorption capacity in phosphate-buffered saline (PBS). Finally, the mechanical properties of CS and p-CTG were investigated using cyclic compression testing in PBS.

Purpose

To evaluate collagen scaffolds (CS) in terms of their in vitro resorption behavior, surface structure, swelling behavior, and mechanical properties in physiologically simulated environments, compared with porcine native connective tissue. Materials and

Results

Solutions containing collagenase demonstrated high resorption rates with significant differences (p < 0.04) between the tested materials after 4 h, 8 h and 24 h, ranging from 54.1 to 100% after 24 h. SEM images revealed cross-linked collagen structures in all untreated specimens. Unlike a-ADM, the scaffolds of p-CM and p-ADM displayed a flake-like structure. The swelling ratio and fluid absorption capacity per area ranged from 13.4 to 25.5% among the test materials and showed following pattern: p-CM > a-ADM > p-ADM. P-CM exhibited higher elastic properties than p-ADM, whereas a-ADM, like p-CTG, were barely compressible and lost structural integrity under increasing pressure. Conclusions and clinical implications: Collagen scaffolds vary significantly in their physical properties, such as resorption and swelling behavior and elastic properties, depending on their microstructure and composition. When clinically applied, these differences should be taken into consideration to achieve the desired outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。