Effects of tACS-Like Electrical Stimulation on Off- and On-Off Center Retinal Ganglion Cells: Part II

tACS 类电刺激对关闭和开启中心视网膜神经节细胞的影响:第二部分

阅读:8
作者:Christianne E Strang, Franklin R Amthor

Conclusion

tACS sculpts Off-center and On-Off retinal ganglion cell responsiveness. The dissimilarity of effects in different cells within the same class and the differential effects on the On and Off components of the light response within the same cell are consistent with the hypothesis that tACS acts at threshold on amacrine cells in the inner plexiform layer.

Methods

We made extracellular recordings in the isolated rabbit eyecup preparation using single electrodes and microelectrode arrays to measure light-evoked spike responses in different classes of Off-center and On-Off retinal ganglion cells before, during, and after brief applications of alternating currents of 1-2 microamperes, at frequencies of 10, 20, 30, and 40 Hz.

Purpose

Transcranial alternating current stimulation (tACS) is used as a brain stimulation mechanism to enhance learning, ameliorate some psychiatric disorders, and modify behavior. This study assessed the effects of near threshold tACS-like currents on Off-center and On-Off retinal ganglion cell responsiveness in the rabbit retina eyecup preparation as a model for central nervous system effects. Materials and

Results

tACS application sculpted the light-evoked response profiles without directly driving spiking activity of the 20 Off-center and On-Off ganglion cells we recorded from. During tACS application, Off responses were significantly enhanced for 6 cells and significantly suppressed for 14 cells, but after tACS application, Off responses were significantly enhanced for 7 cells and suppressed for 12 cells. The Off responses of the remaining two cells returned to baseline. On responses were less affected during and after tACS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。