Development of feeder-free culture systems for generation of ckit+sca1+ progenitors from mouse iPS cells

开发无饲养层培养系统以从小鼠 iPS 细胞生成 ckit+sca1+ 祖细胞

阅读:6
作者:Jian Lin, Irina Fernandez, Krishnendu Roy

Abstract

Patient-specific therapeutic cells derived from induced pluripotent stem (iPS) cells may bypass the ethical issues associated with embryonic stem (ES) cells and avoid potential immunological reactions associated with allogenic transplantation. It is critical, for the ultimate clinical applicability of iPS cell-derived therapies, to establish feeder-free cultures that ensure efficient differentiation of iPS cells into therapeutic progenitors. It is also necessary to understand if iPS cell-derived progenitors differ from those derived from ES cells. In this study, we compared the efficiency of three different feeder-free cultures for differentiating mouse iPS cells into ckit+sca1+ hematopoietic progenitor cells (HPCs) and compared how differentiation and functionality varies between ES and iPS cells. Our results indicated that both iPS and ES cells can be efficiently differentiated into HPCs in suspension cultures supplemented with secretion factors from mouse bone marrow stromal cells (OP9-DL1 conditioned medium). The functionality of these cells was demonstrated by differentiation into CD11c+ dendritic cells (DCs). Both ES and iPS-derived DCs expressed activation molecules (CD86, CD80) in response to LPS stimulation and stimulated T cell proliferation in a mixed lymphocyte reaction (MLR). Extensive quantitative RT-PCR studies were used to study the differences in gene expression profiles of ckit+sca1+ cells generated from the various culture systems as well as differences between ES-derived and iPS-derived cells. We conclude that a feeder-free system using stromal conditioned medium can efficiently generate HPCs as well as functional DCs from iPS cells and the generated cells have similar gene expression profile as those from ES cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。