Dupuytren's fibroblast contractility by sphingosine-1-phosphate is mediated through non-muscle myosin II

杜普伊特伦挛缩症的成纤维细胞收缩性由鞘氨醇-1-磷酸盐介导,通过非肌肉肌球蛋白 II 介导

阅读:8
作者:Issei Komatsu, Jennifer Bond, Angelica Selim, James J Tomasek, L Scott Levin, Howard Levinson

Conclusions

Sphingosine-1-phosphate promotes Dupuytren's fibroblast contractility through S1P(2), which stimulates activation of NMMII. NMMII isoforms are ubiquitously expressed throughout Dupuytren's nodules, which suggests that nodule fibroblasts are primed to respond to S1P stimulation to cause contracture formation. S1P-promoted activation of NMMII may be a target for disease treatment.

Methods

We enmeshed Dupuytren's fibroblasts into fibroblast-populated collagen lattices (FPCLs) and assayed S1P-stimulated FPCL contraction in the presence of the S1P(2) receptor inhibitor JTE-013, the Rho kinase inhibitor Y-27632, the myosin light chain kinase inhibitor ML-7, and the NMMII inhibitor blebbistatin. Tissues from Dupuytren's fascia (n = 10) and normal palmar fascia (n = 10) were immunostained for NMMIIA and NMMIIB.

Purpose

Previous studies suggest that Dupuytren's disease is caused by fibroblast and myofibroblast contractility within Dupuytren's nodules; however, the stimulus for cell contractility is unknown. Sphingosine-1-phosphate (S1P) is a serum-derived lysophospholipid mediator that enhances cell contractility by activating the S1P receptor, S1P(2). It is hypothesized that S1P stimulates Dupuytren's fibroblast contractility through S1P(2) activation of non-muscle myosin II (NMMII). This investigation examined the role of S1P and NMMII activation in Dupuytren's disease progression and suggests potential targets for treatment.

Results

Sphingosine-1-phosphate stimulated FPCL contraction in a dose-dependent manner. Inhibition of S1P(2) and NMMII prevented S1P-stimulated FPCL contraction. Rho kinase and myosin light chain kinase inhibited both S1P and control FPCL contraction. Dupuytren's nodule fibroblasts robustly expressed NMMIIA and NMMIIB, compared with quiescent-appearing cords and normal palmar fascia. Conclusions: Sphingosine-1-phosphate promotes Dupuytren's fibroblast contractility through S1P(2), which stimulates activation of NMMII. NMMII isoforms are ubiquitously expressed throughout Dupuytren's nodules, which suggests that nodule fibroblasts are primed to respond to S1P stimulation to cause contracture formation. S1P-promoted activation of NMMII may be a target for disease treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。