Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis

SpoVA 蛋白在枯草芽孢杆菌孢子发育过程中吸收吡啶二羧酸中的作用

阅读:6
作者:Yunfeng Li, Andrew Davis, George Korza, Pengfei Zhang, Yong-qing Li, Barbara Setlow, Peter Setlow, Bing Hao

Abstract

The proteins encoded by the spoVA operon, including SpoVAD, are essential for the uptake of the 1:1 chelate of pyridine-2,6-dicarboxylic acid (DPA(2,6)) and Ca(2+) into developing spores of the bacterium Bacillus subtilis. The crystal structure of B. subtilis SpoVAD has been determined recently, and a structural homology search revealed that SpoVAD shares significant structural similarity but not sequence homology to a group of enzymes that bind to and/or act on small aromatic molecules. We find that molecular docking placed DPA(2,6) exclusively in a highly conserved potential substrate-binding pocket in SpoVAD that is similar to that in the structurally homologous enzymes. We further demonstrate that SpoVAD binds both DPA(2,6) and Ca(2+)-DPA(2,6) with a similar affinity, while exhibiting markedly weaker binding to other DPA isomers. Importantly, mutations of conserved amino acid residues in the putative DPA(2,6)-binding pocket in SpoVAD essentially abolish its DPA(2,6)-binding capacity. Moreover, replacement of the wild-type spoVAD gene in B. subtilis with any of these spoVAD gene variants effectively eliminated DPA(2,6) uptake into developing spores in sporulation, although the variant proteins were still located in the spore inner membrane. Our results provide direct evidence that SpoVA proteins, in particular SpoVAD, are directly involved in DPA(2,6) movement into developing B. subtilis spores.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。