S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus

Caulobacter crescentus 中 S 层锚定和 S 层相关蛋白酶的定位

阅读:9
作者:Matthew J Ford, John F Nomellini, John Smit

Abstract

The S-layer of the gram-negative bacterium Caulobacter crescentus is composed of a single protein, RsaA, that is secreted and assembled into a hexagonal crystalline array that covers the organism. Despite the widespread occurrence of comparable bacterial S-layers, little is known about S-layer attachment to cell surfaces, especially for gram-negative organisms. Having preliminary indications that the N terminus of RsaA anchors the monomer to the cell surface, we developed an assay to distinguish direct surface attachment from subunit-subunit interactions where small RsaA fragments are incubated with S-layer-negative cells to assess the ability of the fragments to reattach. In doing so, we found that the RsaA anchoring region lies in the first approximately 225 amino acids and that this RsaA anchoring region requires a smooth lipopolysaccharide species found in the outer membrane. By making mutations at six semirandom sites, we learned that relatively minor perturbations within the first approximately 225 amino acids of RsaA caused loss of anchoring. In other studies, we confirmed that only this N-terminal region has a direct role in S-layer anchoring. As a by-product of the anchoring studies, we discovered that Sap, the C. crescentus S-layer-associated protease, recognized a cleavage site in the truncated RsaA fragments that is not detected by Sap in full-length RsaA. This, in turn, led to the discovery that Sap was an extracellular membrane-bound protease, rather than intracellular, as previously proposed. Moreover, Sap was secreted to the cell surface primarily by the S-layer type I secretion apparatus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。