Purification of Ciliary Tubulin from Chlamydomonas reinhardtii

莱茵衣藻纤毛微管蛋白的纯化

阅读:8
作者:Ron Orbach, Jonathon Howard

Abstract

Cilia and flagella play essential roles in environmental sensing, cell locomotion, and development. These organelles possess a central microtubule-based structure known as the axoneme, which serves as a scaffold and is crucial for the function of cilia. Despite their key roles, the biochemical and biophysical properties of the ciliary proteins are poorly understood. To address this issue, we have developed a novel method to purify functional tubulins from different parts of the axoneme, namely the central pair and B-tubule. We use the biflagellate green alga Chlamydomonas reinhardtii, a model organism for studying cilia due to the conserved structure of this organelle, availability of genetic tools and a large collection of mutant strains. Our method yields highly purified functional axonemal tubulins in sufficient quantities to be used for in vitro biochemical and biophysical studies, such as microtubule dynamic assays. It takes 7 to 8 days to grow enough cells; the isolation of the flagella and the purification of the axonemal tubulins require an additional two full days.© 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth and harvest of large volume of cell culture Support Protocol: Assembly of homemade concentration apparatus Basic Protocol 2: Isolation of flagella Basic Protocol 3: Tubulin extraction and purification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。