The role of CXCL chemokine family in the development and progression of gastric cancer

CXCL趋化因子家族在胃癌发生发展中的作用

阅读:5
作者:Xuyan Chen, Renpin Chen, Ruifang Jin, Zhiming Huang

Abstract

The chemokine (C-X-C motif) ligand (CXCL) family plays an important role in inflammation. In order to understand the role of CXC chemokine family in carcinogenesis, this study explored a group of early gastric cancer (GC) patients, and assessed the level of CXC chemokine ligand (CXCL) in blood samples of patients representing systemic circulation and tumor microenvironment, detected the expression of CXC chemokine receptor (CXCR) in tumor tissues, and measured tumor infiltrating immune cell subsets. 69 patients with GC were included in a single center prospective study and were followed up for 6 years. The level of CXCL1-14 was determined by ELISA and the concentration gradient of chemokine was calculated. Western blot was used to detect the expression of CXCR1, CXCR2, CXCR3, and CXCR4 in tumor tissue. CXCL1-14 expression was inhibited by siRNA in HGC27 cells and then the migration ability of HGC27 cells was detected by cell scratch test. The results of this study showed that the chemokine concentrations of CXCL1, CXCL2, CXCL5, CXCL8, CXCL11, and CXCL13 in peripheral blood and tumor drainage blood of patients without recurrence after treatment were significantly lower than those before treatment. The concentrations of CXCL1, CXCL2, CXCL4, CXCL5, CXCL7, CXCL8, CXCL9, CXCL10, CXCL12, CXCL13, and CXCL14 in peripheral blood and tumor drainage blood were significantly higher than those in patients without recurrence. Patients with low expression of CXCR1 and CXCR3 had lower AFP (alpha fetoprotein), smaller tumor volume, and lower TNM tumor stage. Patients with lower expression of CXCR2 and CXCR4 had higher AFP (alpha fetoprotein) level, larger tumor volume, and higher TNM tumor stage. After down-regulation of CXCLs expression, the migration ability of most cell lines was significantly inhibited. This study suggests that CXCL chemokine family plays an important role in the pathogenesis of GC and can be used as a marker for the development of GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。