High-Silica Layer-like Zeolites Y from Seeding-Free Synthesis and Their Catalytic Performance in Low-Density Polyethylene Cracking

无晶种合成高硅层状Y型沸石及其在低密度聚乙烯裂解中的催化性能

阅读:8
作者:Bastian Reiprich, Karolina A Tarach, Kamila Pyra, Gabriela Grzybek, Kinga Góra-Marek

Abstract

Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on organosilane as a growth modifier, and for the first time, the seeding step was successfully avoided. The X-ray diffraction and electron microscopy studies, scanning electron microscopy and transmission electron microscopy confirmed the formation of pure FAU structure and zeolite particles of plate-like morphology arranged in the manner of the skeleton of a cuboctahedron. The in situ Fourier transform infrared (FT-IR) spectroscopic studies, low-temperature nitrogen sorption, and electron microscopy results provided detailed information on the obtained layer-like zeolite Y. The acidic and textural properties of layer-like zeolites Y were faced with the catalytic activity and selectivity in the cracking of LDPE. The quantitative assessment of catalyst selectivity performed in FT-IR/GC-MS operando studies pointed out that LDPE cracking over the layer-like material yielded value-added C3-C4 gases and C5-C6 liquid fraction at the expense of C7+ fraction. The detailed analysis of coke residue on the catalyst was also performed by means of FT-IR spectroscopy, thermogravimetric analysis, and thermoprogrammed oxidation coupled with mass spectrometry for the detection of oxidation products. The acidic and textural properties gave a foundation for the catalytic performance and coking of catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。