Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions

缺陷设计的羟基化介孔尖晶石氧化物作为氧还原和析出反应的双功能电催化剂

阅读:6
作者:Wanchai Deeloed, Tatiana Priamushko, Jakub Čížek, Songwut Suramitr, Freddy Kleitz

Abstract

In this work, defect-rich ordered mesoporous spinel oxides, including CoCo2O4, NiCo2O4, and ZnCo2O4, were developed as bifunctional electrocatalysts toward oxygen reduction and evolution reactions (ORR and OER, respectively). The materials are synthesized via nanocasting and modified by chemical treatment with 0.1 M NaBH4 solution to enhance the defect concentration. The synthesized samples have metal and oxygen divacancies (VCo + VO) as the primary defect sites, as indicated by positron annihilation lifetime spectroscopy (PALS). Cation substitution in the spinel structure induces a higher number of oxygen vacancies. The increased number of surface defects and the synergistic effect between two incorporated metals provide a high activity in both the OER and ORR in the case of NiCo2O4 and ZnCo2O4. Especially, ZnCo2O4 exhibits the highest OER/ORR activity. The defect engineering with 0.1 M NaBH4 solution results in a metal-hydroxylated surface (M-OH) and enhanced the catalytic activity for the post-treated metal oxides in the ORR and OER. This fundamental investigation of the defective structure of the mixed metal oxides offers some useful insights into further development of highly active electrocatalysts through defect engineering methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。