Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis

核 PTEN 增强 microRNA 调节子的成熟,从而限制 MyD88 依赖性脓毒症易感性

阅读:18
作者:Flavia Sisti, Soujuan Wang, Stephanie L Brandt, Nicole Glosson-Byers, Lindsey D Mayo, Young Min Son, Sarah Sturgeon, Luciano Filgueiras, Sonia Jancar, Hector Wong, Charles S Dela Cruz, Nathaniel Andrews, Jose Carlos Alves-Filho, Fernando Q Cunha, C Henrique Serezani

Abstract

Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。