Epigenetic and Metabolic Reprogramming of Fibroblasts in Crohn's Disease Strictures Reveals Histone Deacetylases as Therapeutic Targets

克罗恩病狭窄中成纤维细胞的表观遗传和代谢重编程揭示组蛋白去乙酰化酶作为治疗靶点

阅读:24
作者:Amy Lewis, David T Humphreys, Belen Pan-Castillo, Giulio Berti, Carla Felice, Hannah Gordon, Radha Gadhok, Anke Nijhuis, Shameer Mehta S, Liliane Eleid, Sidra Iqbal, Alessandro Armuzzi, Annamaria Minicozzi, Eleni Giannoulatou, Joanne ChinAleong, Roger Feakins, Virag Sagi-Kiss, Dora Barisic, Margarit

Aims

No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterized fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies.

Background and aims

No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterized fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies.

Conclusions

Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype and metabolic priming characterize SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.

Methods

We undertook immunohistochemistry, metabolic, signalling pathway and epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/NSCD fibroblasts were cultured with TGFβ and valproic acid [VPA].

Results

Stricturing CD was characterized by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFβ stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appeared 'metabolically primed' and responded more strongly to both TGFβ and VPA. Treatment with VPA revealed TGFβ-dependent and TGFβ-independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. Conclusions: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype and metabolic priming characterize SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。