Strontium ranelate promotes odonto-/osteogenic differentiation/mineralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo

雷奈酸锶促进牙乳头细胞体外成牙/成骨分化/矿化以及体内牙髓矿化组织形成

阅读:4
作者:Alamuddin Bakhit, Nobuyuki Kawashima, Kentaro Hashimoto, Sonoko Noda, Keisuke Nara, Masashi Kuramoto, Kento Tazawa, Takashi Okiji

Abstract

This study examined the effects and mechanisms of strontium ranelate (SrRn)-a drug used to treat osteoporosis-on the proliferation and differentiation/mineralization of cloned dental pulp-like cells (mouse dental papillae cells; MDPs). It also determined whether topical application of SrRn to exposed dental pulp tissue promotes the formation of mineralized tissue in vivo. The MDPs were cultured with or without SrRn, and cell proliferation, odonto-/osteoblastic gene expression, mineralized nodule formation, and Akt phosphorylation were evaluated. The formation of mineralized tissue in SrRn-treated pulp tissue in rat upper first molars was evaluated histologically. The SrRn up-regulated cell proliferation and expression of Alp (alkaline phosphatase), Bsp (bone sialoprotein), Dmp (dentin matrix acidic phosphoprotein)-1, Dspp (dentin sialophosphoprotein), and Oc (osteocalcin) in a dose-dependent manner. Mineralized nodule formation was also enhanced by SrRn. NPS-2143, a calcium-sensing receptor (CaSR) antagonist, and siRNA against the CaSR gene blocked SrRn-induced proliferation, odonto-/osteoblastic gene expression, and mineralized nodule formation. SrRn induced Akt phosphorylation, and this was blocked by NPS-2143. Topical application of SrRn to exposed rat molar pulps induced the formation of osteodentin-like mineralized tissue. Our study revealed for the first time that SrRn promotes proliferation and odonto-/osteogenic differentiation/mineralization of MDPs via PI3K/Akt signaling activated by CaSR in vitro; mineralized tissue forms from the dental pulp in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。