Altered Moesin and Actin Cytoskeleton Protein Rearrangements Affect Transendothelial Permeability in Human Endothelial Cells upon Dengue Virus Infection and TNF-α Treatment

改变的 Moesin 和肌动蛋白细胞骨架蛋白重排影响登革病毒感染和 TNF-α 治疗后人内皮细胞的跨内皮通透性

阅读:9
作者:Aroonroong Suttitheptumrong, Thanaporn Mahutchariyakul, Nantapon Rawarak, Onrapak Reamtong, Kobporn Boonnak, Sa-Nga Pattanakitsakul

Abstract

It has been hypothesized that the host, viral factors, and secreted cytokines (especially TNF-α) play roles in the pathogenesis of secondary dengue infections. Mass spectrometry-based proteomic screening of cytoskeleton fractions isolated from human endothelial (EA.hy926) cells upon dengue virus (DENV) infection and TNF-α treatment identified 450 differentially altered proteins. Among them, decreased levels of moesin, actin stress fiber rearrangements, and dot-like formations of vinculin were observed with western blot analyses and/or immunofluorescence staining (IFA). In vitro vascular permeability assays using EA.hy926 cells, seeded on collagen-coated transwell inserts, showed low levels of transendothelial electrical resistance in treated cells. The synergistic effects of DENV infection and TNF-α treatment caused cellular permeability changes in EA.hy926 cells, which coincided with decreasing moesin levels and the production of abnormal organizations of actin stress fibers and vinculin. Functional studies demonstrated moesin overexpression restored transendothelial permeability in DENV/TNF-α-treated EA.hy926 cells. The present study improves the understanding of the disruption mechanisms of cytoskeleton proteins in enhancing vascular permeability during DENV infection and TNF-α treatment. The study also suggests that these disruption mechanisms are major factors contributing to vascular leakage in severe dengue patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。