Synergistic effect of the PDZ and p85β-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus

NS1 蛋白的 PDZ 和 p85β 结合域对禽流感 H5N1 病毒毒力的协同作用

阅读:4
作者:Shufang Fan, Catherine A Macken, Chengjun Li, Makoto Ozawa, Hideo Goto, N F N Iswahyudi, Chairul A Nidom, Hualan Chen, Gabriele Neumann, Yoshihiro Kawaoka

Abstract

The influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y. Here, we show that an HPAI H5N1 virus (A/duck/Hunan/69/2004) encoding NS1-ESKV and NS1-138Y was confined to the respiratory tract of infected mice, whereas a mutant encoding NS1-ESEV and NS1-138F caused systemic infection and killed mice more efficiently. Mutation of either one of these sites had small effects on virulence. In addition, we found that the amino acid at NS1-138 affected not only the induction of the PI3K/Akt pathway but also the interaction of NS1 with cellular PDZ domain proteins. Similarly, the mutation in the PDZ domain-binding motif of NS1 altered its binding to cellular PDZ domain proteins and affected Akt phosphorylation. These findings suggest a functional interplay between the mutations at NS1-138 and NS1-229 that results in a synergistic effect on influenza virulence.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。