Structural basis for the dominant or recessive character of GLIALCAM mutations found in leukodystrophies

脑白质营养不良症中发现的 GLIALCAM 突变的显性或隐性特征的结构基础

阅读:7
作者:Xabier Elorza-Vidal, Efren Xicoy-Espaulella, Adrià Pla-Casillanis, Marta Alonso-Gardón, Héctor Gaitán-Peñas, Carolyn Engel-Pizcueta, Juan Fernández-Recio, Raúl Estévez

Abstract

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a type of leukodystrophy characterized by white matter edema, and it is caused mainly by recessive mutations in MLC1 and GLIALCAM genes. These variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. In addition, dominant mutations in GLIALCAM have also been identified in a subtype of MLC patients with a remitting phenotype. This variant has been named MLC2B. GLIALCAM encodes for an adhesion protein containing two immunoglobulin (Ig) domains and it is needed for MLC1 targeting to astrocyte-astrocyte junctions. Most mutations identified in GLIALCAM abolish GlialCAM targeting to junctions. However, it is unclear why some mutations behave as recessive or dominant. Here, we used a combination of biochemistry methods with a new developed anti-GlialCAM nanobody, double-mutants and cysteine cross-links experiments, together with computer docking, to create a structural model of GlialCAM homo-interactions. Using this model, we suggest that dominant mutations affect different GlialCAM-GlialCAM interacting surfaces in the first Ig domain, which can occur between GlialCAM molecules present in the same cell (cis) or present in neighbouring cells (trans). Our results provide a framework that can be used to understand the molecular basis of pathogenesis of all identified GLIALCAM mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。