Correlating physico-chemical properties of analytes with Hansen solubility parameters of solvents using machine learning algorithm for predicting suitable extraction solvent

使用机器学习算法将分析物的物理化学性质与溶剂的汉森溶解度参数关联起来,以预测合适的萃取溶剂

阅读:4
作者:Eman A Mostafa, Mohammad Abdul Azim, Asmaa A ElZaher, Ehab F ElKady, Marwa A Fouad, Fatma H Ghazy, Esraa A Radi, Mahmoud Abo El Makarim Saleh, Ahmed M El Kerdawy

Abstract

Artificial neural networks (ANNs) are biologically inspired algorithms designed to simulate the way in which the human brain processes information. In sample preparation for bioanalysis, liquid-liquid extraction (LLE) represents an important step with the extraction solvent selection is the key laborious step. In the current work, a robust and reliable ANNs model for LLE solvent prediction was generated which could predict the suitable solvent for analyte extraction. The developed ANNs model takes a set of chosen descriptors for the cited analyte as an input and predicts the corresponding Hansen solubility parameters of the suitable extraction solvent as a model output. Then, from the solvent combination's appendix, the analyst can identify the proposed extraction solvents' combination for the cited analyte easily and efficiently. For the experimental validation of the model prediction capabilities, twenty structurally diverse drugs belonging to different pharmacological classes were extracted from human plasma. The extraction process was performed using the predicted extraction solvent combination for each drug and quantitively estimated by HPLC/UV methods to assess their extraction recovery. The developed LLE solvent prediction model is in- line with the global trend towards green chemistry since it limits the consumption of organic solvents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。