Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid

二十碳五烯酸在体内形成高活性环戊烯酮异前列腺素化合物(A3/J3-异前列腺素)

阅读:12
作者:Joshua D Brooks, Ginger L Milne, Huiyong Yin, Stephanie C Sanchez, Ned A Porter, Jason D Morrow

Abstract

Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than native EPA, possesses anti-atherosclerotic, anti-inflammatory, and anti-proliferative effects. Very few studies to date have investigated which EPA oxidation products are responsible for this bioactivity. Our research group has previously reported that anti-inflammatory prostaglandin A(2)-like and prostaglandin J(2)-like compounds, termed A(2)/J(2)-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether cyclopentenone-IsoP compounds are formed from the oxidation of EPA in vivo. Herein, we report the formation of cyclopentenone-IsoP molecules, termed A(3)/J(3)-IsoPs, formed in abundance in vitro and in vivo from EPA peroxidation. Chemical approaches coupled with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) were used to structurally characterize these compounds as A(3)/J(3)-IsoPs. We found that levels of these molecules increase approximately 200-fold with oxidation of EPA in vitro from a basal level of 0.8 +/- 0.4 ng/mg EPA to 196 +/- 23 ng/mg EPA after 36 h. We also detected these compounds in significant amounts in fresh liver tissue from EPA-fed rats at basal levels of 19 +/- 2 ng/g tissue. Amounts increased to 102 +/- 15 ng/g tissue in vivo in settings of oxidative stress. These studies have, for the first time, definitively characterized novel, highly reactive A/J-ring IsoP compounds that form in abundance from the oxidation of EPA in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。