A comparative assessment of gamma-secretase activity in transgenic and non-transgenic rodent brain

转基因和非转基因啮齿动物脑中γ-分泌酶活性的比较评估

阅读:21
作者:Julian L Goggi, Huw D Lewis, Joanie Mok, Tim Harrison, Mark S Shearman, John R Atack, Jonathan D Best

Abstract

Amyloid-beta (Abeta) deposits are one of the hallmarks of the neuropathological degeneration observed in Alzheimer's disease (AD) and Abeta concentrations have been reported to vary in different brain regions of AD patients. Abeta is produced by the sequential cleavage of amyloid precursor protein (APP) by beta-secretase and gamma-secretase, respectively. Previous studies have shown that over-expression of the gamma-secretase complex leads to increased gamma-secretase proteolytic activity increasing Abeta production. However, it is not known whether brain regions with highest Abeta concentration also express relatively higher levels of gamma-secretase activity. Accordingly, the relationship between Abeta levels and gamma-secretase activity across brain regions was investigated and correlated in the brains of transgenic and non-transgenic rodents commonly used in AD research. The data demonstrated that Abeta levels do vary in different brain regions in both transgenic and non-transgenic mice but are not correlated with regional gamma-secretase activity. Furthermore, this study demonstrated that while mutations in the APP and PS1 sequences affect the absolute Abeta levels this is not reflected in an increase in gamma-secretase proteolytic activity. The data in the current paper indicate that this assay is able to measure the level of gamma-secretase activity in rodent species. Using this methodology will aid our understanding of physiological gamma-secretase function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。