Hepatitis B virus X stimulates redox signaling through activation of ataxia telangiectasia mutated kinase

乙肝病毒 X 通过激活毛细血管扩张性共济失调突变激酶来刺激氧化还原信号传导

阅读:6
作者:Yasunobu Matsuda, Ayumi Sanpei, Toshifumi Wakai, Masayuki Kubota, Mami Osawa, Yuki Hirose, Jun Sakata, Takashi Kobayashi, Shun Fujimaki, Masaaki Takamura, Satoshi Yamagiwa, Masahiko Yano, Shogo Ohkoshi, Yutaka Aoyagi

Abstract

Hepatitis B virus X (HBX) protein plays a crucial role in carcinogenesis, but its mechanism is unclear. The involvement of ataxia telangiectasia mutated (ATM) kinase in the enhanced redox system was investigated by examining the phosphorylation level of ATM in HBX gene-transfected cells and in transgenic mice following redox system manipulation by treatment with hydrogen peroxide (H2O2) or antioxidant. Western blotting and immunostaining showed that phospho-ATM was significantly increased by HBX both in vitro (3.2-fold; p<0.05) and in vivo (4-fold; p<0.05), and this effect was abrogated by antioxidant treatment. The level of PKC-δ in HBX-expressing cells was increased 3.5-fold compared to controls. Nuclear localized NF-E2-related factor 2 (Nrf2) was increased in HBX-expressing cells exposed to H2O2, but remained at lower levels after the treatment with rottlerin, KU55933, or caffeine. The levels of anti-oxidant molecules were increased in HBX expressing cells and in transgenic mice, indicating that HBX stimulates the Nrf2-mediated redox system. The levels of intracellular reactive oxygen species (ROS) were significantly increased in HBX-expressing cells treated with hydrogen peroxide in the presence of ATM inhibitor KU55933 or caffeine. Treatment of HBX-expressing cells with KU55933 or caffeine before the exposure to H2O2 increased the ratio of cell apoptosis to 33±4% (p<0.05) and 22±4% (p<0.05), respectively. Collectively, HBX stimulates the ATM-mediated PKC-δ/Nrf2 pathway, and maintains the enhanced activity of the redox system. Therefore, manipulating ATM kinase activity might be a useful strategy for treating HBX-induced carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。