Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal-Organic Vapor-Phase Epitaxy and Their Application in Photodetectors

晶圆级二硫化钼/石墨烯异质结构的金属有机气相外延生长及其在光电探测器中的应用

阅读:5
作者:Anh Tuan Hoang, Ajit K Katiyar, Heechang Shin, Neeraj Mishra, Stiven Forti, Camilla Coletti, Jong-Hyun Ahn

Abstract

Van der Waals heterostructures have attracted increasing interest, owing to the combined benefits of their constituents. These hybrid nanostructures can be realized via epitaxial growth, which offers a promising approach for the controlled synthesis of the desired crystal phase and the interface between van der Waals layers. Here, the epitaxial growth of a continuous molybdenum disulfide (MoS2) film on large-area graphene, which was directly grown on a sapphire substrate, is reported. Interestingly, the grain size of MoS2 grown on graphene increases, whereas that of MoS2 grown on SiO2 decreases with an increasing amount of hydrogen in the chemical vapor deposition reactor. In addition, to achieve the same quality, MoS2 grown on graphene requires a much lower growth temperature (400 °C) than that grown on SiO2 (580 °C). The MoS2/graphene heterostructure that was epitaxially grown on a transparent platform was investigated to explore its photosensing properties and was found to exhibit inverse photoresponse with highly uniform photoresponsivity in the photodetector pixels fabricated across a full wafer. The MoS2/graphene heterostructure exhibited ultrahigh photoresponsivity (4.3 × 104 A W-1) upon exposure to visible light of a wide range of wavelengths, confirming the growth of a high-quality MoS2/graphene heterostructure with a clean interface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。