Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates

利用柔性基板远程控制磁场诱导电刺激增强人类成骨细胞增殖和分化

阅读:5
作者:Oriol Careta, Aliona Nicolenco, Filippos Perdikos, Andreu Blanquer, Elena Ibañez, Eva Pellicer, Christina Stefani, Borja Sepúlveda, Josep Nogués, Jordi Sort, Carme Nogués

Abstract

With the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation. However, the direct insertion of electrodes into tissues can cause undesirable inflammation or infection reactions. As an alternative, magnetoelectric heterostructures (wherein magnetic fields are applied to induce electric polarization) could be used to achieve electric stimulation without the need for implanted electrodes. Here, we develop a magnetoelectric platform based on flexible kapton/FeGa/P(VDF-TrFE) (flexible substrate/magnetostrictive layer/ferroelectric layer) heterostructures for remote magnetic-field-induced electric field stimulation of human osteoblast cells. We show that the use of flexible supports overcomes the clamping effects that typically occur when analogous magnetoelectric structures are grown onto rigid substrates (which preclude strain transfer from the magnetostrictive to the ferroelectric layers). The study of the diverse proliferation and differentiation markers evidence that in all the stages of bone formation (cell proliferation, extracellular matrix maturation, and mineralization), the electrical stimulation of the cells results in a remarkably better performance. The results pave the way for novel strategies for remote cell stimulation based on flexible platforms not only in bone regeneration but also in many other applications where electrical cell stimulation may be beneficial (e.g., neurological diseases or skin regeneration).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。