Time-domain single photon-excited autofluorescence lifetime for label-free detection of T cell activation

时域单光子激发自发荧光寿命用于无标记检测 T 细胞活化

阅读:13
作者:Kayvan Samimi, Emmanuel Contreras Guzman, Steven M Trier, Dan L Pham, Tongcheng Qian, Melissa C Skala

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique, capable of label-free assessment of the metabolic state and function within single cells. The FLIM measurements of autofluorescence were recently shown to be sensitive to the functional state and subtype of T cells. Therefore, autofluorescence FLIM could improve cell manufacturing technologies for adoptive immunotherapy, which currently require a time-intensive process of cell labeling with fluorescent antibodies. However, current autofluorescence FLIM implementations are typically too slow, bulky, and prohibitively expensive for use in cell manufacturing pipelines. Here we report a single photon-excited confocal whole-cell autofluorescence system that uses fast field-programmable gate array-based time tagging electronics to achieve time-correlated single photon counting (TCSPC) of single-cell autofluorescence. The system includes simultaneous near-infrared bright-field imaging and is sensitive to variations in the fluorescence decay profile of the metabolic coenzyme NAD(P)H in human T cells due to the activation state. The classification of activated and quiescent T cells achieved high accuracy and precision (area under the receiver operating characteristic curve, AUC = 0.92). The lower-cost, higher acquisition speed, and resistance to pile-up effects at high photon flux compared to traditional multiphoton-excited FLIM and TCSPC implementations with similar SNR make this system attractive for integration into flow cytometry, sorting, and quality control in cell manufacturing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。