Total flavonoids of Rhizoma drynariae improves tendon-bone healing for anterior cruciate ligament reconstruction in mice and promotes the osteogenic differentiation of bone mesenchymal stem cells by the ERR1/2-Gga1-TGF-β/MAPK pathway

骨碎补总黄酮通过ERR1/2-Gga1-TGF-β/MAPK通路促进小鼠前交叉韧带重建腱骨愈合及促进骨髓间充质干细胞成骨分化

阅读:5
作者:Lei Han, Canfeng Wang, Tuo Wang, Yungeng Hu, Hongshun Wang

Background

Total flavonoids of Rhizoma drynariae (TFRD) is broadly used in the treatment of orthopedic diseases. Nevertheless, the effects and underlying mechanism of TFRD on tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) remain unclear.

Conclusion

TFRD improves tendon-bone healing in ACLR mouse models and facilitates the osteogenic differentiation of BMSCs through the ERR1/2-Gga1-TGF-β/MAPK pathway, which might deepen our understanding of the underlying mechanism of TFRD in tendon-bone healing.

Methods

The ACLR mouse model was established. Hematoxylin and Eosin (HE) staining was used for histological analysis of tendon-bone healing. Western blot was utilized to detect the levels of osteogenic related factors (ALP, OCN, RUNX2). The viability and alkaline phosphatase (ALP) activity of bone mesenchymal stem cells (BMSCs) were determined by Cell Counting Kit-8 (CCK-8) and ALP assays. The interaction of estrogen related receptor alpha (ESRRA), estrogen related receptor beta (ESRRB), and golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (Gga1) was detected by luciferase reporter assays. The levels of important proteins on the TGF-β/MAPK pathway were measured by western blot.

Results

TFRD improved tendon-bone healing, restored biomechanics of ACLR mice and activated the TGF-β/MAPK pathway. TFRD treatment also enhanced the viability and osteogenic differentiation of BMSCs in vitro. Then, we demonstrated that TFRD targeted ESRRA and ESRRB to transcriptionally activate Gga1 expression. Knockdown of ESRRA, ESRRB, or Gga1 suppressed the viability and osteogenic differentiation of TFRD-induced BMSCs, which was revealed to be restored by Gga1 overexpression. The overexpression of ESRRA, ESRRB, or Gga1 was demonstrated to promote the BMSC viability and osteogenic differentiation. TGF-β1 treatment can reverse the impact of Gga1 inhibition on osteogenic differentiation in TFRD-induced BMSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。