A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena

Zip3 样蛋白在原生动物四膜虫无 SC 减数分裂中起交叉形成作用

阅读:5
作者:Anura Shodhan, Kensuke Kataoka, Kazufumi Mochizuki, Maria Novatchkova, Josef Loidl

Abstract

When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。