The effect of pirfenidone on rat chronic prostatitis/chronic pelvic pain syndrome and its mechanisms

吡非尼酮对大鼠慢性前列腺炎/慢性盆腔痛综合征的治疗作用及其机制

阅读:5
作者:Xufeng Peng, Hailin Guo, Jun Chen, Jihong Wang, Jianwen Huang

Background

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an intractable problem of the urogenital system. The aetiopathogenesis and effective treatments for CP/CPPS are needed to be untangled. Pirfenidone is a molecule that exhibits anti-inflammatory, antifibrotic, and antioxidative stress capacities in a variety of animal experiments and clinical trials. This study was aimed to investigate the therapeutic effect of pirfenidone on CP/CPPS and to identify the mechanism responsible for it.

Conclusions

Pirfenidone can exert a beneficial effect against CFA-induced CP/CPPS by anti-inflammatory, antioxidative, antifibrotic properties, and the function is mediated at least partly through the M2 polarization of macrophages and the inhibition of NF-κB signaling pathway. These findings suggest that pirfenidone holds promise as a potential therapeutic for the treatment of CP/CPPS.

Methods

A CP/CPPS model was induced in rats by intraprostatic injection of complete Freund's adjuvant (CFA). Blood and prostatic tissues were harvested for assessment after the administration of pirfenidone or vehicle for 4 weeks.

Results

The findings revealed that pirfenidone significantly ameliorated chronic pelvic pain and inhibited prostatic inflammation and fibrosis. Further study found that pirfenidone suppressed the expression of proinflammatory mediators, including tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, IL-8. Pirfenidone exhibited a potent antioxidant capacity through improving the activities of glutathione, catalase, total superoxide dismutase, and reducing the production of malondialdehyde. Furthermore, pirfenidone also facilitated the polarization of M2 macrophages and suppressed the activation of the nuclear factor-κB (NF-κB) signaling pathway. Conclusions: Pirfenidone can exert a beneficial effect against CFA-induced CP/CPPS by anti-inflammatory, antioxidative, antifibrotic properties, and the function is mediated at least partly through the M2 polarization of macrophages and the inhibition of NF-κB signaling pathway. These findings suggest that pirfenidone holds promise as a potential therapeutic for the treatment of CP/CPPS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。