Acute selective ablation of rat insulin promoter-expressing (RIPHER) neurons defines their orexigenic nature

急性选择性消融大鼠胰岛素启动子表达 (RIPHER) 神经元决定了它们的促食欲特性

阅读:5
作者:Eva Rother, Bengt F Belgardt, Eva Tsaousidou, Brigitte Hampel, Ari Waisman, Martin G Myers Jr, Jens C Brüning

Abstract

Rat insulin promoter (RIP)-expressing neurons in the hypothalamus control body weight and energy homeostasis. However, genetic approaches to study the role of these neurons have been limited by the fact that RIP expression is predominantly found in pancreatic β-cells, which impedes selective targeting of neurons. To define the function of hypothalamic RIP-expressing neurons, we set out to acutely and selectively eliminate them via diphtheria toxin-mediated ablation. Therefore, the diphtheria toxin receptor transgene was specifically expressed upon RIP-specific Cre recombination using a RIP-Cre line first described by Herrera (RIP(HER)-Cre) [Herrera PL (2000) Development 127:2317-2322]. Using proopiomelanocortin-expressing cells located in the arcuate nucleus of the hypothalamus and in the pituitary gland as a model, we established a unique protocol of intracerebroventricular application of diphtheria toxin to efficiently ablate hypothalamic cells with no concomitant effect on pituitary proopiomelanocortin-expressing corticotrophs in the mouse. Using this approach to ablate RIP(HER) neurons in the brain, but not in the pancreas, resulted in decreased food intake and loss of body weight and fat mass. In addition, ablation of RIP(HER) neurons caused increased c-Fos immunoreactivity of neurons in the paraventricular nucleus (PVN) of the hypothalamus. Moreover, transsynaptic tracing of RIP(HER) neurons revealed labeling of neurons located in the PVN and dorsomedial hypothalamic nucleus. Thus, our experiments indicate that RIP(HER) neurons inhibit anorexigenic neurons in the PVN, revealing a basic orexigenic nature of these cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。