O-GlcNAcylation of RPA2 at S4/S8 antagonizes phosphorylation and regulates checkpoint activation during replication stress

RPA2 在 S4/S8 位点的 O-GlcNAc 糖基化可拮抗磷酸化并调节复制压力期间的检查点激活

阅读:5
作者:Jianxin Zhao, Guangcan Shao, Xiaoxuan Lu, Zhuan Lv, Meng-Qiu Dong, Xiaoqian Liu, Jing Li

Abstract

O-linked N-acetylglucosamine (O-GlcNAc) is the most abundant mono-saccharide modification occurring in the cytoplasm, nucleus, and mitochondria. The recent advent of mass spectrometry technology has enabled the identification of abundant O-GlcNAc transferase (OGT) substrates in diverse biological processes, such as cell cycle progression, replication, and DNA damage response. Herein we report the O-GlcNAcylation of Replication Protein A2 (RPA2), a component of the heterotrimeric RPA complex pivotal for DNA metabolism. We found that RPA2 interacts with OGT, and a topoisomerase II inhibitor, etoposide, diminishes the association. Using higher-energy collisional dissociation mass spectrometry, we mapped RPA2 O-GlcNAc sites to be Ser-4/Ser-8, which are well-known PIKK-dependent RPA2 phosphorylation sites involved in checkpoint activation upon replication stress. We further demonstrated that Ser-4/Ser-8 O-GlcNAcylation antagonizes phosphorylation and impairs downstream Chk1 activation. Moreover, RPA2 O-GlcNAcylation sustains H2AX phosphorylation upon etoposide treatment and promotes inappropriate cell cycle progression, indicative of checkpoint defects. Our work not only unveils a new OGT substrate, but also underscores the distinct roles of OGT in replication versus replication stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。