atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB

atxA 通过 acpA 和新发现的调节剂 acpB 控制炭疽芽孢杆菌荚膜的合成

阅读:4
作者:Melissa Drysdale, Agathe Bourgogne, Susan G Hilsenbeck, Theresa M Koehler

Abstract

Two regulatory genes, acpA and atxA, have been reported to control expression of the Bacillus anthracis capsule biosynthesis operon capBCAD. The atxA gene is located on the virulence plasmid pXO1, while pXO2 carries acpA and the cap genes. acpA has been viewed as the major regulator of the cap operon because it is essential for capsule gene expression in a pXO1(-) pXO2(+) strain. atxA is essential for toxin gene transcription but has also been implicated in control of the cap genes. The molecular functions of the regulatory proteins are unknown. We examined cap gene expression in a genetically complete pXO1(+) pXO2(+) strain. Our results indicate that another pXO2 gene, acpB (previously called pXO2-53; accession no. NC002146.1:49418-50866), has a role in cap expression. The predicted amino acid sequence of AcpB is 62% similar to that of AcpA and 50% similar to that of AtxA. Assessment of cap gene transcription revealed that cap expression was not affected in a pXO1(+) pXO2(+) acpB-null mutant and was slightly reduced in an isogenic acpA mutant. However, cap gene expression was abolished in an acpA acpB double mutant. Microscopic examination of capsule synthesis by the mutants corroborated these findings. acpA and acpB expression is controlled by atxA; capsule synthesis and transcription of acpA and acpB were markedly reduced in an atxA mutant. The data suggest that, in a strain containing both virulence plasmids, atxA is the major regulator of capsule synthesis and controls capBCAD expression indirectly, via positive regulation of acpA and acpB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。