Monitoring RNA restructuring in a human cell-free extract reveals eIF4A-dependent and eIF4A-independent unwinding activity

监测人类无细胞提取物中的 RNA 重组可揭示 eIF4A 依赖性和 eIF4A 独立的解旋活性

阅读:21
作者:Mattie H O'Sullivan, Christopher S Fraser

Abstract

The canonical DEAD-box helicase, eukaryotic initiation factor (eIF) 4A, unwinds 5' UTR secondary structures to promote mRNA translation initiation. Growing evidence has indicated that other helicases, such as DHX29 and DDX3/ded1p, also function to promote the scanning of the 40S subunit on highly structured mRNAs. It is unknown how the relative contributions of eIF4A and other helicases regulate duplex unwinding on an mRNA to promote initiation. Here, we have adapted a real-time fluorescent duplex unwinding assay to monitor helicase activity precisely in the 5' UTR of a reporter mRNA that can be translated in a cell-free extract in parallel. We monitored the rate of 5' UTR-dependent duplex unwinding in the absence or presence of an eIF4A inhibitor (hippuristanol), a dominant negative eIF4A (eIF4A-R362Q), or a mutant eIF4E (eIF4E-W73L) that can bind the m7G cap but not eIF4G. Our experiments reveal that the duplex unwinding activity in the cell-free extract is roughly evenly split between eIF4A-dependent and eIF4A-independent mechanisms. Importantly, we show that the robust eIF4A-independent duplex unwinding is not sufficient for translation. We also show that the m7G cap structure, and not the poly(A) tail, is the primary mRNA modification responsible for promoting duplex unwinding in our cell-free extract system. Overall, the fluorescent duplex unwinding assay provides a precise method to investigate how eIF4A-dependent and eIF4A-independent helicase activity regulates translation initiation in cell-free extracts. We anticipate that potential small molecule inhibitors could be tested for helicase inhibition using this duplex unwinding assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。