X-CoOTe (X = S, Se, and P) with Oxygen/Tellurium Dual Vacancies and Banana Stem Fiber-Derived Carbon Fiber a s Battery-Type Cathode and Anode Materials for Asymmetric Supercapacitor

具有氧/碲双空位的 X-CoOTe(X = S、Se 和 P)和香蕉茎纤维衍生的碳纤维作为非对称超级电容器的电池型阴极和阳极材料

阅读:4
作者:Mani Sakthivel, Kuo-Chuan Ho

Abstract

In this work, we demonstrated the synthesis of anions (X = selenium (Se), sulfur (S), and phosphorus (P)) doped cobalt oxytelluride (X-CoOTe) with oxygen and tellurium dual vacancies using hydrothermal methods, followed by selenization, sulfurization, and phosphorization reactions. Especially, the Se-CoOTe-modified nickel foam (Se-CoOTe/NF) electrode delivered a higher specific capacity (752.95 C/g) and an extremely lower charge transfer resistance (0.87 Ω) than S-CoOTe/NF and P-CoOTe/NF due to the higher metallic conductivity of Se. Both oxygen and tellurium vacancies facilitate higher charge transfer conductivity, specific capacity, and stability. On the other hand, banana stem core fiber-derived activated carbon fiber (AC) with exfoliated carbon sheet, cracked surface, and corresponding high surface area boosts the excellent cycle stability up to 4000 cycles with capacitance retention of 100.29%. Thus, the asymmetric device (Se-CoOTe/NF//AC/NF) exhibited an extendable cell voltage (1.55 V), higher energy density (155.6 W h kg-1) at a power density (1356.2 W kg-1), and generous long-term stability (100% retention up to 10 000 cycles) in a liquid alkaline electrolyte. In the practicability test, the proposed asymmetric device mutually showed an increased operating voltage from 1.55 to 4.65 V for a three-series connection. In a three-series connection, a single white LED and an LED string glowed efficiently. This new finding will be very useful to develop tellurium-based chalcogenides and biowaste-derived carbon for energy storage applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。