Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids

逆向 C-糖苷酶反应提供外来生物核酸的 C-核苷酸构建块

阅读:5
作者:Martin Pfeiffer, Bernd Nidetzky

Abstract

C-Analogues of the canonical N-nucleosides have considerable importance in medicinal chemistry and are promising building blocks of xenobiotic nucleic acids (XNA) in synthetic biology. Although well established for synthesis of N-nucleosides, biocatalytic methods are lacking in C-nucleoside synthetic chemistry. Here, we identify pseudouridine monophosphate C-glycosidase for selective 5-β-C-glycosylation of uracil and derivatives thereof from pentose 5-phosphate (D-ribose, 2-deoxy-D-ribose, D-arabinose, D-xylose) substrates. Substrate requirements of the enzymatic reaction are consistent with a Mannich-like addition between the pyrimidine nucleobase and the iminium intermediate of enzyme (Lys166) and open-chain pentose 5-phosphate. β-Elimination of the lysine and stereoselective ring closure give the product. We demonstrate phosphorylation-glycosylation cascade reactions for efficient, one-pot synthesis of C-nucleoside phosphates (yield: 33 - 94%) from unprotected sugar and nucleobase. We show incorporation of the enzymatically synthesized C-nucleotide triphosphates into nucleic acids by RNA polymerase. Collectively, these findings implement biocatalytic methodology for C-nucleotide synthesis which can facilitate XNA engineering for synthetic biology applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。