SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA

SNRPB2 通过控制 MDM4 前 mRNA 的选择性剪接来促进三阴性乳腺癌进展

阅读:5
作者:Shiyi Yu, Yue Si, Jianzhong Yu, Chengyang Jiang, Fei Cheng, Miao Xu, Zhehao Fan, Fangchen Liu, Chang Liu, Ying Wang, Ning Wang, Chenxu Liu, Caili Bi, Haibo Sun

Abstract

Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。