Real-time digital polymerase chain reaction (PCR) as a novel technology improves limit of detection for rare allele assays

实时数字聚合酶链式反应 (PCR) 作为一种新技术提高了稀有等位基因检测的检测限

阅读:5
作者:Jiachen Xu #, Kyra Duong #, Zhenlin Yang #, Kavanaugh Kaji #, Jiajia Ou, Steven R Head, Gogce Crynen, Phillip Ordoukhanian, Lauren Hanna, Ava Hanna, Yan Wang #, Zhijie Wang #, Jie Wang #

Background

Tumor heterogeneity may lead to false negative test

Conclusions

This novel technology with improved sensitivity is important and needed because it addresses current issues with liquid biopsy tests. Due to limited amounts of circulating tumor DNA (ctDNA) obtained for liquid biopsy tests, few copies of mutant alleles are expected. With the lower baseline of real-time digital PCR, false negative test results from tissue biopsy would be more effectively reduced, leading to more patients receiving the targeted therapy they need for better survival.

Methods

The novel real-time digital PCR instrument was compared to an endpoint digital PCR system to determine the sensitivity and quantification accuracy of both instruments. Samples were all thermal cycled on the real-time digital PCR instrument but were analyzed on both endpoint and real-time digital PCR instruments to compare the performance without introducing other variables. Contrived samples for epidermal growth factor receptor (EGFR) exon 19 deletion, T790M, and L858R point mutations as well as human epidermal growth factor receptor 2 (HER2) amplification were tested. Different mutant allele frequencies and wildtype to mutant gene copy number ratios were tested for EGFR and HER2, respectively.

Results

By removing false positive datapoints using real-time amplification curves, real-time digital PCR improved sensitivity by lowering the baseline for wildtype samples. For EGFR 19del assay, samples with 2 or more fluorescein amidite (FAM) labeled positive wells are determined positive by real-time digital PCR, while a minimum of 5 FAM positive datapoints is needed by endpoint digital PCR. Improved limit of detection for EGFR 19del mutation was also observed. Real-time digital PCR also had better quantification accuracy and sensitivity, resulting in the mutant allele frequencies being closer to the expected values for all EGFR mutations, especially at very low allele frequencies. However, at high allele frequencies or for gene amplification assays, real-time digital PCR is comparable with endpoint digital PCR. Conclusions: This novel technology with improved sensitivity is important and needed because it addresses current issues with liquid biopsy tests. Due to limited amounts of circulating tumor DNA (ctDNA) obtained for liquid biopsy tests, few copies of mutant alleles are expected. With the lower baseline of real-time digital PCR, false negative test results from tissue biopsy would be more effectively reduced, leading to more patients receiving the targeted therapy they need for better survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。