HIF1α controls steroidogenesis under acute hypoxic stress

HIF1α 控制急性缺氧应激下的类固醇生成

阅读:5
作者:Stephen Ariyeloye #, Deepika Watts #, Mangesh T Jaykar, Cagdas Ermis, Anja Krüger, Denise Kaden, Barbara K Stepien, Vasileia Ismini Alexaki, Mirko Peitzsch, Nicole Bechmann, Peter Mirtschink, Ali El-Armouche, Ben Wielockx

Background

Hypoxia is a critical physiological and pathological condition known to influence various cellular processes, including steroidogenesis. While previous studies, including our own, have highlighted the regulatory effects of Hypoxia-Inducible Factor 1α (HIF1α) on steroid production, the specific molecular mechanisms remain poorly understood. This study investigates the role of hypoxia and HIF1α in steroid biosynthesis across multiple experimental models during acute exposure to low oxygen levels.

Conclusions

These findings elucidate the molecular mechanisms underlying acute hypoxia/HIF1α-induced changes in steroid biosynthesis and may also be useful in developing new strategies for various steroid hormone pathologies.

Methods

To assess the extent to which acute hypoxia modulates steroidogenesis, we employed several approaches, including the Y1 adrenocortical cell line, and a conditional HIF1α-deficient mouse line in the adrenal cortex. We focused on various regulatory patterns that may critically suppress steroidogenesis.

Results

In Y1 cells, hypoxia upregulated specific microRNAs in a HIF1α-dependent manner, resulting in the suppression of mRNA levels of critical steroidogenic enzymes and a subsequent reduction in steroid hormone production. The hypoxia/HIF1α-dependent induction of these microRNAs and the consequent modulation of steroid production were confirmed in vivo. Notably, using our adrenocortical-specific HIF1α-deficient mouse line, we demonstrated that the increase in miRNA expression in vivo is also directly HIF1α-dependent, while the regulation of steroidogenic enzymes (e.g., StAR and Cyp11a1) and steroid production occurs at the level of protein translation, revealing an unexpected layer of control under hypoxic/HIF1 α conditions in vivo. Conclusions: These findings elucidate the molecular mechanisms underlying acute hypoxia/HIF1α-induced changes in steroid biosynthesis and may also be useful in developing new strategies for various steroid hormone pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。