Robotically Embodied Biological Neural Networks to Investigate Haptic Restoration with Neuroprosthetic Hands

机器人体现生物神经网络,利用神经义手研究触觉恢复

阅读:6
作者:Craig Ades, Moaed A Abd, E Du, Jianning Wei, Emmanuelle Tognoli, Erik D Engeberg

Abstract

Neuroprosthetic limbs reconnect severed neural pathways for control of (and increasingly sensation from) an artificial limb. However, the plastic interaction between robotic and biological components is poorly understood. To gain such insight, we developed a novel noninvasive neuroprosthetic research platform that enables bidirectional electrical communications (action, sensory perception) between a dexterous artificial hand and neuronal cultures living in a multichannel microelectrode array (MEA) chamber. Artificial tactile sensations from robotic fingertips were encoded to mimic slowly adapting (SA) or rapidly adapting (RA) mechanoreceptors. Afferent spike trains were used to stimulate neurons in a region of the neuronal culture. Electrical activity from neurons at another region in the MEA chamber was used as the motor control signal for the artificial hand. Results from artificial neural networks (ANNs) showed that the haptic model used to encode RA or SA fingertip sensations affected biological neural network (BNN) activity patterns, which in turn impacted the behavior of the artificial hand. That is, the exhibited finger tapping behavior of this closed-loop neurorobotic system showed statistical significance (p<0.01) between the haptic encoding methods across two different neuronal cultures and over multiple days. These findings suggest that our noninvasive neuroprosthetic research platform can be used to devise high-throughput experiments exploring how neural plasticity is affected by the mutual interactions between perception and action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。