Eosinophilia and reduced STAT3 signaling affect neutrophil cell death in autosomal-dominant Hyper-IgE syndrome

嗜酸性粒细胞增多和 STAT3 信号减弱影响常染色体显性高 IgE 综合征中的中性粒细胞死亡

阅读:7
作者:Susan Farmand, Bernhard Kremer, Monika Häffner, Katrin Pütsep, Peter Bergman, Mikael Sundin, Henrike Ritterbusch, Maximilian Seidl, Marie Follo, Philipp Henneke, Birgitta Henriques-Normark

Abstract

The autosomal-dominant hyper-IgE syndrome (HIES), caused by mutations in STAT3, is a rare primary immunodeficiency that predisposes to mucocutaneous candidiasis and staphylococcal skin and lung infections. This infection phenotype is suggestive of defects in neutrophils, but data on neutrophil functions in HIES are inconsistent. This study was undertaken to functionally characterize neutrophils in STAT3-deficient HIES patients and to analyze whether the patients` eosinophilia affects the neutrophil phenotype in S. aureus infection. Neutrophil functions and cell death kinetics were studied in eight STAT3-deficient patients. Moreover, the response of STAT3-deficient neutrophils to S. aureus and the impact of autologous eosinophils on pathogen-induced cell death were analyzed. No specific aberrations in neutrophil functions were detected within this cohort. However, the half-life of STAT3-deficient neutrophils ex vivo was reduced, which was partially attributable to the presence of eosinophils. Increased S. aureus-induced cell lysis, dependent on the staphylococcal virulence controlling accessory gene regulator (agr)-locus, was observed in STAT3-deficient neutrophils and upon addition of eosinophils. Accelerated neutrophil cell death kinetics may underlie the reported variability in neutrophil function testing in HIES. Increased S. aureus-induced lysis of STAT3-deficient neutrophils might affect pathogen control and contribute to tissue destruction during staphylococcal infections in HIES.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。