ALYREF Drives Cancer Cell Proliferation Through an ALYREF-MYC Positive Feedback Loop in Glioblastoma

ALYREF 通过胶质母细胞瘤中的 ALYREF-MYC 正反馈回路驱动癌细胞增殖

阅读:5
作者:Jianjun Wang #, Yuchen Li #, Binbin Xu #, Jiao Dong, Haiyan Zhao, Dongxia Zhao, Yong Wu

Background

While RNA-binding proteins (RBPs) are known to affect RNA homeostasis during cancer cell initiation and development, their characteristics and biological function in glioblastoma (GBM) remain unclear.

Conclusion

Our data showed that ALYREF is regulated by MYC at the transcriptional level. ALYREF drives GBM cell proliferation by activating the Wnt/β-catenin signaling pathway and stabilizing MYC mRNA, suggesting that an ALYREF-MYC positive feedback loop might be a potential therapeutic target for treating GBM patients.

Methods

Differences in RBP expression were explored by differential analysis of The Cancer Genome Atlas-GBM and Genotype-Tissue Expression (GTEx) datasets. Real-time PCR was conducted to verify the expressional levels of Aly/REF export factor (ALYREF) in normal brain and GBM tissues. Proliferative assays were performed to investigate molecular functions of ALYREF in GBM cells in vitro and in vivo. Real-time PCR and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze the ALYREF downstream signaling pathways. A chromatin immunoprecipitation (ChIP) assay was performed to identify key transcriptional factors that regulate ALYREF expression at RNA level. UV crosslinking, immunoprecipitation (CLIP) and RNA stability assays were conducted to reveal the bound RNAs and their stability regulated by ALYREF.

Results

The results showed that ALYREF is frequently increased in GBM tissues, and its mRNA expression is regulated by the MYC proto-oncogene, bHLH transcription factor (MYC). Inhibition of ALYREF expression decreased GBM cell proliferative ability in vitro and tumor formation in vivo. KEGG analysis revealed that high ALYREF expression in GBM tissues was enriched in the upregulation of oncogenic pathways such as the Wnt/β-catenin signaling pathway. The CLIP assay showed that ALYREF drives GBM carcinogenesis by binding to and stabilizing MYC mRNAs. Overexpression of MYC restored the oncogenic property of ALYREF-deficient GBM cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。