Deletion of microsomal prostaglandin E synthase-1 does not alter ozone-induced airway hyper-responsiveness

微粒体前列腺素 E 合酶-1 的缺失不会改变臭氧引起的气道高反应性

阅读:16
作者:Miao Wang, Philip R Cooper, Meiqi Jiang, Hengjiang Zhao, Yiqun Hui, Yubing Yao, Joshua C Tate, Gautam Damera, John A Lawson, William F Jester Jr, Angela Haczku, Reynold A Panettieri Jr, Garret A FitzGerald

Abstract

Nonsteroidal anti-inflammatory drugs ameliorate pain and fever by inhibiting cyclooxygenase (COX) and suppressing prostanoid formation. Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes formation of PGE(2) from the COX product PGH(2) and has emerged as a therapeutic target. Inhibition of mPGES-1, however, renders the PGH(2) substrate available for diversion to other PG synthases. To address the possibility that substrate diversion augments formation of PGs that might modulate bronchial tone, we assessed the impact of mPGES-1 deletion in a mouse model of ozone-induced airway hyper-responsiveness. Ozone exposure increased total lung resistance to inhaled methacholine in wild-type mice. Deletion of mPGES-1 had little effect on total lung resistance in either naive or ozone-exposed animals. The carbachol-induced narrowing of luminal diameter in intrapulmonary airways of lung slices from acute ozone-exposed mice was also unaltered by mPGES-1 deletion. Likewise, although concentrations of PGE(2) were reduced in bronchoalveolar lavage fluid, whereas 6-keto-PGF(1alpha), PGD(2), and PGF(2alpha), all were increased, deletion of mPGES-1 failed to influence cell trafficking into the airways of either naive or ozone-exposed animals. Despite biochemical evidence of PGH(2) substrate diversion to potential bronchomodulator PGs, deletion of mPGES-1 had little effect on ozone-induced airway inflammation or airway hyper-responsiveness. Pharmacologically targeting mPGES-1 may not predispose patients at risk to airway dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。