Porcine Liver Carboxylesterase Requires Polyisoprenylation for High Affinity Binding to Cysteinyl Substrates

猪肝羧酸酶需要聚异戊二烯化才能与半胱氨酰底物高亲和力结合

阅读:11
作者:Nazarius S Lamango, Randolph Duverna, Wang Zhang, Seth Y Ablordeppey

Abstract

The polyisoprenylation pathway enzymes have been the focus of numerous studies to better understand the roles of polyisoprenylated proteins in eukaryotic cells and to identify novel targets against diseases such as cancer. The final step of the pathway is a reversible reaction catalyzed by isoprenyl carboxylmethyl transferase (icmt) whose products are then hydrolyzed by polyisoprenylated methylated protein methyl esterase (PMPMEase). Unlike the other pathway enzymes, the esterase has received little attention. We recently purified PMPMEase from porcine liver using an S-polyisoprenylated cysteine methyl ester substrate-dependent screening assay. However, no data is available showing its relative interaction with structurally diverse substrates. As such, its role as the putative endogenous PMPMEase has not been demonstrated. A series of substrates with S-alkyl substituents ranging from 2 to 20 carbons, including the two moieties found in polyisoprenylated proteins, were synthesized. Enzyme kinetics analysis revealed a 33-fold increase in affinity (K(M) values) from ethyl- (C-2, 505+/-63 microM), prenyl- (C-5, 294+/-25 microM), trans-geranyl- (C-10, 87+/-12 microM), trans, trans-farnesyl- (C-15, 29+/-2.2 microM) to all trans-geranylgeranyl- (C-20-, 15+/-2.7 microM) based analogs. Comparative molecular field analysis of the data yielded a cross-validated q(2) of 0.863+/-0.365 and a final R(2) of 0.995. Since the substrates with the S-trans, trans-farnesyl and S-all trans-geranylgeranyl moieties that occur in proteins show the highest affinity towards PMPMEase and are not hydrolyzed by the cholinesterases, the results suggest that polyisoprenylated proteins are the endogenous substrates of this esterase. The results suggest design strategies for high affinity and selective inhibitors of PMPMEase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。