Sigma-2 receptor modulator CT1812 alters key pathways and rescues retinal pigment epithelium (RPE) functional deficits associated with dry age-related macular degeneration (AMD)

Sigma-2 受体调节剂 CT1812 改变关键通路并挽救与干性年龄相关性黄斑变性 (AMD) 相关的视网膜色素上皮 (RPE) 功能缺陷

阅读:6
作者:Britney N Lizama #, Eloise Keeling #, Eunah Cho, Evi M Malagise, Nicole Knezovich, Lora Waybright, Emily Watto, Gary Look, Valentina Di Caro, Anthony O Caggiano, J Arjuna Ratnayaka, Mary E Hamby

Abstract

Trafficking defects in retinal pigmented epithelial (RPE) cells contribute to RPE atrophy, a hallmark of geographic atrophy (GA) in dry age-related macular degeneration (AMD). Dry AMD pathogenesis is multifactorial, including amyloid-β (Aβ) accumulation and oxidative stress-common features of Alzheimer's disease (AD). The Sigma-2 receptor (S2R) regulates lipid and protein trafficking, and S2R modulators reverse trafficking deficits in neurodegeneration in vitro models. Given overlapping mechanisms contributing to AD and AMD, S2R modulator effects on RPE function were investigated. The S2R modulator CT1812 is in clinical trials for AD, dementia with Lewy bodies, and GA. Leveraging AD trials testing CT1812, unbiased analyses of patient biofluid proteomes revealed that proteins altered by CT1812 associated with GA and macular degeneration disease ontologies and overlapped with proteins altered in dry AMD. Differential expression analysis of RPE transcripts from APP-Swedish/London mutant transgenic mice, a model featuring Aβ accumulation, revealed reversal of autophagy/trafficking transcripts in S2R modulator-treated animals versus vehicle toward healthy control levels. Photoreceptor outer segment (POS) trafficking in human RPE cells showed deficits in response to Aβ1-42 or hydrogen peroxide compared to vehicle. S2R modulators normalized stressor-induced POS trafficking deficits, resembling healthy control. Taken together, S2R modulation may provide a novel therapeutic strategy for dry AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。