PGRN Inhibits Early B-cell Activation and IgE Production Through the IFITM3-STAT1 Signaling Pathway in Asthma

PGRN 通过 IFITM3-STAT1 信号通路抑制哮喘早期 B 细胞活化和 IgE 产生

阅读:5
作者:Pingping Zhang, Changshun Ruan, Guangli Yang, Yaning Guan, Yin Zhu, Qian Li, Xin Dai, Yang An, Xiaoqi Shi, Pei Huang, Yan Chen, Zhixu He, Zuochen Du, Chaohong Liu

Abstract

Progranulin (PGRN) plays a critical role in bronchial asthma and the function of various immune cells. However, the mechanisms by which PGRN influences B-cell receptor (BCR) signaling and immunoglobulin E(IgE) production are not fully understood. The study aimed to elucidate the molecular mechanisms through which PGRN affects BCR signaling, B-cell differentiation, and IgE production. A PGRN knockout mouse model, along with techniques including flow cytometry, the creation of a bone marrow chimeric mouse model, total internal reflection fluorescence (TIRF), and Western blot (WB) analysis is employed, to investigate the link between PGRN and various aspects of B-cell biology. It is discovered that the absence of PGRN in mice alters peripheral B-cell subpopulations, promotes IgE class switching in a cell-intrinsic manner, and affects B-cell subpopulations. Additionally, PGRN modulates B-cell functions by regulating BCR signaling pathways, metabolic processes, and the actin cytoskeleton during early B-cell activation. Significantly, PGRN deficiency results in diminished production of NP-specific antibodies. Moreover, it is found that PGRN inhibits B-cell activation and IgE production through the PGRN-IFITM3-STAT1 signaling pathway. The findings provide new strategies for the targeted treatment of bronchial asthma, highlighting the crucial role of PGRN in B-cell signaling and IgE production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。