Seeing the long tail: A novel green fluorescent protein, SiriusGFP, for ultra long timelapse imaging

看到长尾巴:一种新型绿色荧光蛋白 SiriusGFP,用于超长延时成像

阅读:4
作者:Sheng Zhong, Felix Rivera-Molina, Alberto Rivetta, Derek Toomre, Joseph Santos-Sacchi, Dhasakumar Navaratnam

Background

Fluorescent proteins (FPs) have widespread uses in cell biology. However, the practical applications of FPs are significantly limited due to their rapid photobleaching and misfolding when fused to target proteins. New method: Using a combination of novel and known mutations to eGFP, we developed a well folded and very photostable variant, SiriusGFP.

Conclusions

We have developed a variant of eGFP, SiriusGFP, that shows over a two fold increase in photostability with utility in methods requiring sustained or high intensity excitation as in 4D confocal or SIM imaging.

Results

The fluorescence spectrum indicated that the excitation and emission peaks of SiriusGFP were red-shifted by 16 and 8 nm, respectively. Co- operative effects of two key mutations, S147R and S205 V, contribute to its photostability. SiriusGFP tagged to the mitochondrial outer membrane protein Omp25 showed sustained fluorescence during continuous 3D-scanning confocal imaging (4D confocal) compared to eGFP-tagged Omp25. Furthermore, with super-resolution structured illumination microscopy (SIM) we demonstrate marked improvements in image quality and resolution (130 nm in XY axis, and 310 nm in Z axis), as well as, decreased artifacts due to photobleaching. Comparison with existing method(s): Compared to eGFP. SiriusGFP shows a 2-fold increase in photostability in vitro, and folds well when fused to the N- and C- termini of cytoplasmic and membrane proteins. While its quantum yield is ˜3 fold lower than eGFP, its decreased brightness was more than compensated by its increasedphotostability in different experimental paradigms allowing practical experimentation without dynamic adjustment of light intensity or fluorescence sampling times. Conclusions: We have developed a variant of eGFP, SiriusGFP, that shows over a two fold increase in photostability with utility in methods requiring sustained or high intensity excitation as in 4D confocal or SIM imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。