IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein

IQGAP1通过心肌素通路促进血管平滑肌表型转换:静脉曲张的潜在治疗靶点

阅读:7
作者:Xianchen Huang, Yiqi Jin, Dayong Zhou, Guoxiong Xu, Jian Huang, Liming Shen

Abstract

Recently, the architectural remodeling of venous vessel wall ranks as the basis of varicose veins development based on the phenotypic state of vascular smooth muscle cells (VSMCs). In this study, we firstly demonstrated an obvious up-regulation of IQ-domain GTPase-activating protein 1 (IQGAP1) in patients with varicose veins. Importantly, following stimulation with PDGF-BB for 4 h, a common inducer of phenotypic switch in VSMCs, a dramatically time-dependent increase in IQGAP1 expression was observed in human venous smooth muscle cells (HUVSMCs), concomitant with the down-regulation of SMC markers [including α-smooth muscle actin (SMA), smooth muscle calponin (CNN), SM22α (SM22)], suggesting a critical function of IQGAP1 during the switch of synthetic VSMC phenotype. Further analysis ascertained that IQGAP1 overexpression significantly inhibited the expression of SMA, SM and CNN, while its silencing dramatically promoted their expression levels. Moreover, the elevated IQGAP1 enhanced cell proliferation, migration and rearrangement. Mechanism assay confirmed that IQGAP1 overexpression notably blocked myocardin levels. Importantly, after transfection with myocardin siRNA, IQGAP1 down-regulation-induced decrease in cell proliferation, migration and cell rearrangement was remarkably attenuated. Together, these results demonstrated that IQGAP1 may regulate the phenotypic switch of VSMCs by myocardin pathway, which is critical for the pathological progression of varicose vein. Therefore, this study supports a prominent insight into how IQGAP1 possesses its benefit function in varicose veins development by regulating vascular remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。