Imaging Single Bacterial Cells with Electro-optical Impedance Microscopy

利用电光阻抗显微镜对单个细菌细胞进行成像

阅读:6
作者:Fenni Zhang, Shaopeng Wang, Yunze Yang, Jiapei Jiang, Nongjian Tao

Abstract

Impedance measurements have been an important tool for biosensor applications, including protein detection, DNA quantification, and cell study. We present here an electro-optical impedance microscopy (EIM) based on the dependence of surface optical transmission on local surface charge density for single bacteria impedance imaging. We applied a potential modulation to bacteria placed on an indium tin oxide-coated slide and simultaneously recorded a sequence of transmitted microscopy images. By performing fast Fourier transform analysis on the image sequences, we obtained the DC component (signal at 0 Hz) for cell morphology imaging and the AC component (signal at the modulation frequency) for the mapping of cell impedance responses with subcellular resolution for the first time. Using this method, we have monitored the viability of Escherichia coli bacterial cells under treatment with two different classes of antibiotics with low-frequency potential modulation. The results showed that the impedance response is sensitive to the antibiotic that targets the bacterial cell membrane as the membrane capacitance dominated at low-frequency modulation. Heterogeneous responses to the antibiotic treatment were observed at a single bacteria level. In addition to the high spatial resolution, EIM is label-free and simple and can be potentially used for the continuous mapping of single bacteria impedance changes under different conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。