Myristoylated Eepd1 Enhances Lipolysis and Thermogenesis through PKA Activation to Combat Obesity

肉豆蔻酰化 Eepd1 通过激活 PKA 增强脂肪分解和产热作用,对抗肥胖

阅读:5
作者:Suzhen Chen #, Yanping Wang #, Qian Zhou #, Qiqi Qian, Quanxin Jiang, Chuchu Liu, Yan Liu, Peihui Zhou, Jie Xiong, Yao Zhang, Ning Wang, Yang Emma Li, Limin Yin, Hongyuan Yang, Junli Liu

Abstract

Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset. Eepd1 is primarily expressed in adipose tissue, where its downregulation or deletion accelerates obesity development. We show that Eepd1 ablation hinders PKA activation, thereby inhibiting lipolysis and thermogenesis in adipose tissue. Notably, cold exposure enhances Eepd1's myristoylation, facilitating its anchorage to adipocyte membranes and subsequent activation of PKA, while a mutation at the myristoylation site of Eepd1 disrupts this process. Moreover, individuals with obesity exhibit reduced Eepd1 expression. Pharmacological restoration of Eepd1 with Retigabine dihydrochloride effectively mitigates obesity. This study reveals Eepd1's unexpected role in promoting adipose lipolysis and thermogenesis, underscoring its potential as a promising therapeutic target to combat obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。