A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus

真菌 1 类组蛋白去乙酰化酶中的一种新基序对曲霉菌的生长和发育至关重要

阅读:7
作者:Martin Tribus, Ingo Bauer, Johannes Galehr, Gudrun Rieser, Patrick Trojer, Gerald Brosch, Peter Loidl, Hubertus Haas, Stefan Graessle

Abstract

Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。