Network pharmacology combined with pharmacodynamics revealed the anti-inflammatory mechanism of Tanreqing capsule against acute-exacerbation chronic obstructive pulmonary disease

网络药理学结合药效学揭示痰热清胶囊抗急性加重性慢性阻塞性肺疾病的抗炎机制

阅读:6
作者:Xiao-Xiao Han #, Yan-Ge Tian #, Xue-Fang Liu, Di Zhao, Xue-Hang Du, Hao-Ran Dong, Su-Xiang Feng, Jian-Sheng Li

Abstract

Acute-exacerbation chronic obstructive pulmonary disease (AECOPD) is mainly associated with acute respiratory tract infection. In recent years, a growing number of studies have found that Tanreqing capsule (TRQ) has a favorable anti-inflammatory effect. In this study, we used network pharmacology and pharmacodynamics to explore the molecular mechanism and effects of TRQ in AECOPD treatment. To further understand the molecular mechanism of TRQ in AECOPD treatment, we used the network pharmacology to predict components of TRQ, TRQ-related targets, AECOPD-related targets, and pathways. In addition, we used the cigarette-smoke/lipopolysaccharide -induced AECOPD experimental model in Sprague-Dawley rats (72 rats randomly divided into six groups [n = 12 each]: control, model, high-TRQ [TRQ-H], medium-TRQ [TRQ-M], low-TRQ, and dexamethasone [Dex]) to evaluate the therapeutic effects of TRQ and to verify the network pharmacology. We found that 59 overlapping targets based on component-and AECOPD-related targets were frequently involved in the advanced glycation end product-receptor for advanced glycation end product signaling pathway in diabetic complications, the phosphatidylinositol-3-kinase-protein kinase B signaling pathway, and the hypoxia-inducible factor 1 signaling pathway, which might play important roles in the anti-inflammatory mechanism of TRQ in AECOPD treatment. Moreover, TRQ groups exerted protective effects against AECOPD by reducing the infiltration of inflammatory cells. Meanwhile, TRQ-M and TRQ-H groups significantly downregulated or upregulated the expression of tumor necrosis factor, interleukin (IL) 6, C-reactive protein, IL10, and serum amyloid A, as key targets in network pharmacology, in the serum and bronchoalveolar lavage fluid to achieve anti-inflammatory efficacy. Our study showed that TRQ had better anti-inflammatory efficacy against AECOPD, and initially elucidated its molecular mechanism. Moreover, our study also provides a new strategy to explore effective mechanism of TRQ against AECOPD; and further studies are needed to validate the biological processes and pathways of TRQ against AECOPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。